If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+30x-223=0
a = 1; b = 30; c = -223;
Δ = b2-4ac
Δ = 302-4·1·(-223)
Δ = 1792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1792}=\sqrt{256*7}=\sqrt{256}*\sqrt{7}=16\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-16\sqrt{7}}{2*1}=\frac{-30-16\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+16\sqrt{7}}{2*1}=\frac{-30+16\sqrt{7}}{2} $
| 3x+3/4x=36 | | 3+t=t-1 | | 2+2t=t+2 | | 3v-8+2v+8=90 | | 3v-8+2v+8=180 | | 2x^2+5=3x^2+2x-7 | | 2x^2+2x=7x^2+12 | | 8-27^2(x)=0 | | -(-3+8n)=-3(n-1) | | 5(4a+3)=5(5a-7)+10 | | X/6-x/8=7/6 | | 7a2+2a=0 | | 2(x+4)=-2(7x-1)+2x | | 3(y+4)-7y=32 | | 257=-v+89 | | .3x=28800 | | .3x=36000 | | 16x^2+4x=6 | | 2(3x+2)1/3=3(4x-9)1/3 | | 8a+6.A=0.5 | | 7/11=10/v | | 24-6r=18 | | 23x+34=180 | | 1/5+b/3=b+2 | | -3(a+2)=4a-11 | | 0=-16t^2+30t-10.5 | | 150m-100m+39.000=40.800-150m | | 12x-6x+180=12x+780 | | 112x-6x+180=12x+780 | | 2(2m+6)=4(5m-6) | | x+(3x/7)=1440 | | 100x^2-40x+10=0 |